enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallelogram law - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_law

    For the general quadrilateral (with four sides not necessarily equal) Euler's quadrilateral theorem states + + + = + +, where is the length of the line segment joining the midpoints of the diagonals. It can be seen from the diagram that x = 0 {\displaystyle x=0} for a parallelogram, and so the general formula simplifies to the parallelogram law.

  3. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    The Varignon parallelogram is a rectangle if and only if the diagonals of the quadrilateral are perpendicular, that is, if the quadrilateral is an orthodiagonal quadrilateral. [6]: p. 14 [7]: p. 169 For a self-crossing quadrilateral, the Varignon parallelogram can degenerate to four collinear points, forming a line segment traversed twice.

  4. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    Each diagonal divides the quadrilateral into two congruent triangles. The sum of the squares of the sides equals the sum of the squares of the diagonals. (This is the parallelogram law.) It has rotational symmetry of order 2. The sum of the distances from any interior point to the sides is independent of the location of the point. [4]

  5. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    The diagonals of the Varignon parallelogram are the bimedians of the original quadrilateral. The two bimedians in a quadrilateral and the line segment joining the midpoints of the diagonals in that quadrilateral are concurrent and are all bisected by their point of intersection.

  6. Theorem of the gnomon - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_the_gnomon

    The theorem of the gnomon can be used to construct a new parallelogram or rectangle of equal area to a given parallelogram or rectangle by the means of straightedge and compass constructions. This also allows the representation of a division of two numbers in geometrical terms, an important feature to reformulate geometrical problems in ...

  7. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .

  8. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    The diagonals of an isosceles trapezoid have the same length; that is, every isosceles trapezoid is an equidiagonal quadrilateral. Moreover, the diagonals divide each other in the same proportions. As pictured, the diagonals AC and BD have the same length (AC = BD) and divide each other into segments of the same length (AE = DE and BE = CE).

  9. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    The diagonals of a square are (about 1.414) times the length of a side of the square. This value, known as the square root of 2 or Pythagoras' constant, [1] was the first number proven to be irrational. A square can also be defined as a parallelogram with equal diagonals that bisect the angles.