Search results
Results from the WOW.Com Content Network
An R-square of 0.6 is considered the minimum acceptable level. [citation needed] An R-square of 0.8 is considered good for metric scaling and .9 is considered good for non-metric scaling. Other possible tests are Kruskal’s Stress, split data tests, data stability tests (i.e., eliminating one brand), and test-retest reliability.
The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [ 7 ] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [ 8 ] which implements the NSGA-II procedure with ES.
The top row is a series of plots using the escape time algorithm for 10000, 1000 and 100 maximum iterations per pixel respectively. The bottom row uses the same maximum iteration values but utilizes the histogram coloring method. Notice how little the coloring changes per different maximum iteration counts for the histogram coloring method plots.
It can be used to examine heterogeneity in a meta-analysis, as an alternative or supplement to a forest plot. Heat map; Lollipop plot; Nichols plot : This is a graph used in signal processing in which the logarithm of the magnitude is plotted against the phase of a frequency response on orthogonal axes.
A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the performance of a binary classifier model (can be used for multi class classification as well) at varying threshold values. The ROC curve is the plot of the true positive rate (TPR) against the false positive rate (FPR) at each threshold setting.
Scatter plot (2D/3D) Stem-and-leaf plot; Parallel coordinates; Odds ratio; Targeted projection pursuit; Heat map; Bar chart; Horizon graph; Glyph-based visualization methods such as PhenoPlot [10] and Chernoff faces; Projection methods such as grand tour, guided tour and manual tour; Interactive versions of these plots; Dimensionality reduction ...
Correspondence analysis (CA) is a multivariate statistical technique proposed [1] by Herman Otto Hartley (Hirschfeld) [2] and later developed by Jean-Paul Benzécri. [3] It is conceptually similar to principal component analysis, but applies to categorical rather than continuous data.
Parallel Coordinates plots are a common method of visualizing high-dimensional datasets to analyze multivariate data having multiple variables, or attributes. To plot, or visualize, a set of points in n -dimensional space , n parallel lines are drawn over the background representing coordinate axes, typically oriented vertically with equal spacing.