enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  3. Accuracy paradox - Wikipedia

    en.wikipedia.org/wiki/Accuracy_paradox

    The accuracy paradox is the paradoxical finding that accuracy is not a good metric for predictive models when classifying in predictive analytics. This is because a simple model may have a high level of accuracy but too crude to be useful.

  4. Symmetric mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Symmetric_mean_absolute...

    Provided the data are strictly positive, a better measure of relative accuracy can be obtained based on the log of the accuracy ratio: log(F t / A t) This measure is easier to analyze statistically and has valuable symmetry and unbiasedness properties

  5. Mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_percentage_error

    This little-known but serious issue can be overcome by using an accuracy measure based on the logarithm of the accuracy ratio (the ratio of the predicted to actual value), given by ⁡ (). This approach leads to superior statistical properties and also leads to predictions which can be interpreted in terms of the geometric mean.

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...

  8. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  9. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    This example shows how bagging could be used in the context of diagnosing disease. A set of patients are the original dataset, but each model is trained only by the patients in its bag. The patients in each out-of-bag set can be used to test their respective models.