Search results
Results from the WOW.Com Content Network
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
The following table lists many specialized symbols commonly used in modern mathematics, ordered by their introduction date. The table can also be ordered alphabetically by clicking on the relevant header title.
The rationale behind this is that it enables design and usage of special mathematical characters that include all necessary properties to differentiate from other alphanumerics, e.g. in mathematics an italic "𝐴" can have a different meaning from a roman letter "A".
The symbol was introduced originally in 1770 by Nicolas de Condorcet, who used it for a partial differential, and adopted for the partial derivative by Adrien-Marie Legendre in 1786. [3] It represents a specialized cursive type of the letter d , just as the integral sign originates as a specialized type of a long s (first used in print by ...
The symbol is used to denote negation. For example, if P ( x ) is the predicate " x is greater than 0 and less than 1", then, for a domain of discourse X of all natural numbers, the existential quantification "There exists a natural number x which is greater than 0 and less than 1" can be symbolically stated as:
In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication P → Q, the converse is Q → P.
Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms ", in contrast to the ordinary mathematical practice of deriving theorems from axioms.