Search results
Results from the WOW.Com Content Network
Data Warehouse and Data mart overview, with Data Marts shown in the top right. In computing, a data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is a core component of business intelligence. [1] Data warehouses are central repositories of data integrated from ...
In data warehousing, a fact table consists of the measurements, metrics or facts of a business process. It is located at the center of a star schema or a snowflake schema surrounded by dimension tables. Where multiple fact tables are used, these are arranged as a fact constellation schema.
Data Warehouse and Data Mart overview, with Data Marts shown in the top right.. A data mart is a structure/access pattern specific to data warehouse environments. The data mart is a subset of the data warehouse that focuses on a specific business line, department, subject area, or team. [1]
Dimensions can define a wide variety of characteristics, but some of the most common attributes defined by dimension tables include: Time dimension tables describe time at the lowest level of time granularity for which events are recorded in the star schema; Geography dimension tables describe location data, such as country, state, or city
A data warehouse can contain multiple dimensional schemas that share dimension tables, allowing them to be used together. Coming up with a standard set of dimensions is an important part of dimensional modeling. Its high performance has made the dimensional model the most popular database structure for OLAP.
The process of dimensional modeling builds on a 4-step design method that helps to ensure the usability of the dimensional model and the use of the data warehouse. The basics in the design build on the actual business process which the data warehouse should cover. Therefore, the first step in the model is to describe the business process which ...
Data architecture consist of models, policies, rules, and standards that govern which data is collected and how it is stored, arranged, integrated, and put to use in data systems and in organizations. [1] Data is usually one of several architecture domains that form the pillars of an enterprise architecture or solution architecture. [2]
Data discovery is the first step in the data transformation process. Typically the data is profiled using profiling tools or sometimes using manually written profiling scripts to better understand the structure and characteristics of the data and decide how it needs to be transformed.