Search results
Results from the WOW.Com Content Network
The determinant of the Hessian matrix is called the Hessian determinant. [1] The Hessian matrix of a function is the transpose of the Jacobian matrix of the gradient of the function ; that is: (()) = (()).
The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point. For instance, the continuously differentiable function f is invertible near a point p ∈ R n if the Jacobian determinant at p is non-zero.
Newton's method requires the Jacobian matrix of all partial derivatives of a multivariate function when used to search for zeros or the Hessian matrix when used for finding extrema. Quasi-Newton methods, on the other hand, can be used when the Jacobian matrices or Hessian matrices are unavailable or are impractical to compute at every iteration.
Newton's method for solving f(x) = 0 uses the Jacobian matrix, J, at every iteration. However, computing this Jacobian can be a difficult and expensive operation; for large problems such as those involving solving the Kohn–Sham equations in quantum mechanics the number of variables can be in the hundreds of thousands. The idea behind Broyden ...
The Laplace–Beltrami operator, when applied to a function, is the trace (tr) of the function's Hessian: = (()) where the trace is taken with respect to the inverse of the metric tensor. The Laplace–Beltrami operator also can be generalized to an operator (also called the Laplace–Beltrami operator) which operates on tensor fields , by ...
[18] [19] [20] Presumably for additional derivatives, the Hessian matrix and so forth are also assumed non-singular according to this scheme, [citation needed] although note that any ODE of order greater than one can be (and usually is) rewritten as system of ODEs of first order, [21] which makes the Jacobian singularity criterion sufficient ...
The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers.
The graph colouring techniques explore sparsity patterns of the Hessian matrix and cheap Hessian vector products to obtain the entire matrix. Thus these techniques are suited for large, sparse matrices. The general strategy of any such colouring technique is as follows. Obtain the global sparsity pattern of