enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reactive oxygen species - Wikipedia

    en.wikipedia.org/wiki/Reactive_oxygen_species

    Another source of ROS production in animal cells is the electron transfer reactions catalyzed by the mitochondrial P450 systems in steroidogenic tissues. [25] These P450 systems are dependent on the transfer of electrons from NADPH to P450. During this process, some electrons "leak" and react with O 2 producing superoxide.

  3. Redox - Wikipedia

    en.wikipedia.org/wiki/Redox

    The term redox state is often used to describe the balance of GSH/GSSG, NAD + /NADH and NADP + /NADPH in a biological system such as a cell or organ. The redox state is reflected in the balance of several sets of metabolites (e.g., lactate and pyruvate , beta-hydroxybutyrate and acetoacetate ), whose interconversion is dependent on these ratios.

  4. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    When working at the frontier between inorganic and biological processes (e.g., when comparing abiotic and biotic processes in geochemistry when microbial activity could also be at work in the system), care must be taken not to inadvertently directly mix standard reduction potentials (versus SHE, pH = 0) with formal (or apparent) reduction ...

  5. Reduction potential - Wikipedia

    en.wikipedia.org/wiki/Reduction_potential

    In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...

  6. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.

  7. Oxidoreductase - Wikipedia

    en.wikipedia.org/wiki/Oxidoreductase

    For example, an enzyme that catalyzed this reaction would be an oxidoreductase: A – + B → A + B – In this example, A is the reductant (electron donor) and B is the oxidant (electron acceptor). In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis:

  8. Bioelectrochemistry - Wikipedia

    en.wikipedia.org/wiki/Bioelectrochemistry

    The domain of bioelectrochemistry has grown considerably over the past century, maintaining the close connections to various medical and biological and engineering disciplines like electrophysiology, biomedical engineering, and enzyme kinetics. The achievements in this field have been awarded several Nobel prizes for Physiology or Medicine. [2]

  9. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.