Search results
Results from the WOW.Com Content Network
In mathematics, a function from a set X to ... of mathematics. For example, in linear algebra and ... previously defined functions; such a formula allows ...
In mathematics, an algebraic function is a function that can be defined as the root of an irreducible polynomial equation. Algebraic functions are often algebraic expressions using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power.
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x , denoted ⌈ x ⌉ or ceil( x ) .
The roots of a polynomial expression of degree n, or equivalently the solutions of a polynomial equation, can always be written as algebraic expressions if n < 5 (see quadratic formula, cubic function, and quartic equation). Such a solution of an equation is called an algebraic solution.
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...
so the cis function can be used to extend Euler's formula to a more general complex version. [5] The function is mostly used as a convenient shorthand notation to simplify some expressions, [6] [7] [8] for example in conjunction with Fourier and Hartley transforms, [9] [10] [11] or when exponential functions shouldn't be used for some reason in ...
The mathematical definition of an elementary function, or a function in elementary form, is considered in the context of differential algebra. A differential algebra is an algebra with the extra operation of derivation (algebraic version of differentiation).