Search results
Results from the WOW.Com Content Network
There are two major types of problems in uncertainty quantification: one is the forward propagation of uncertainty (where the various sources of uncertainty are propagated through the model to predict the overall uncertainty in the system response) and the other is the inverse assessment of model uncertainty and parameter uncertainty (where the ...
In physical experiments uncertainty analysis, or experimental uncertainty assessment, deals with assessing the uncertainty in a measurement.An experiment designed to determine an effect, demonstrate a law, or estimate the numerical value of a physical variable will be affected by errors due to instrumentation, methodology, presence of confounding effects and so on.
Importantly the NLPD assesses the quality of the model's uncertainty quantification. It is used for both regression and classification. To compute: (1) find the probabilities given by the model to the true labels. (2) find the negative log of this product. (we actually find the negative of the sum of the logs, for numerical reasons).
For example, an experimental uncertainty analysis of an undergraduate physics lab experiment in which a pendulum can estimate the value of the local gravitational acceleration constant g. The relevant equation [ 1 ] for an idealized simple pendulum is, approximately,
Quantification of Margins and Uncertainty (QMU) is a decision support methodology for complex technical decisions. QMU focuses on the identification, characterization, and analysis of performance thresholds and their associated margins for engineering systems that are evaluated under conditions of uncertainty, particularly when portions of those results are generated using computational ...
In order to be able to predict and calculate variability associated with model uncertainty, many methods have been devised and utilized across different disciplines to determine theoretical values for parameters such as stress and strain. Examples of theoretical models used alongside probabilistic design include: Finite element analysis [10]
Identify the model output to be analysed (the target of interest should ideally have a direct relation to the problem tackled by the model). Run the model a number of times using some design of experiments, [15] dictated by the method of choice and the input uncertainty. Using the resulting model outputs, calculate the sensitivity measures of ...
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.