enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heptagon - Wikipedia

    en.wikipedia.org/wiki/Heptagon

    In geometry, a heptagon or septagon is a seven-sided polygon or 7-gon.. The heptagon is sometimes referred to as the septagon, using "sept-" (an elision of septua-, a Latin-derived numerical prefix, rather than hepta-, a Greek-derived numerical prefix; both are cognate) together with the Greek suffix "-agon" meaning angle.

  3. List of polygons - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons

    A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.

  4. Heptagram - Wikipedia

    en.wikipedia.org/wiki/Heptagram

    In general, a heptagram is any self-intersecting heptagon (7-sided polygon). There are two regular heptagrams, labeled as {7/2} and {7/3}, with the second number representing the vertex interval step from a regular heptagon, {7/1}. This is the smallest star polygon that can be drawn in two forms, as irreducible fractions.

  5. Polygon - Wikipedia

    en.wikipedia.org/wiki/Polygon

    For any two simple polygons of equal area, the Bolyai–Gerwien theorem asserts that the first can be cut into polygonal pieces which can be reassembled to form the second polygon. The lengths of the sides of a polygon do not in general determine its area. [9] However, if the polygon is simple and cyclic then the sides do determine the area. [10]

  6. Digon - Wikipedia

    en.wikipedia.org/wiki/Digon

    Any straight-sided digon is regular even though it is degenerate, because its two edges are the same length and its two angles are equal (both being zero degrees). As such, the regular digon is a constructible polygon. [3] Some definitions of a polygon do not consider the digon to be a proper polygon because of its degeneracy in the Euclidean ...

  7. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    Some regular polygons are easy to construct with compass and straightedge; other regular polygons are not constructible at all. The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [11]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon.

  8. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]

  9. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    A regular polygon with n sides can be constructed with ruler, compass, and angle trisector if and only if =, where r, s, k ≥ 0 and where the p i are distinct Pierpont primes greater than 3 (primes of the form +). [8]: Thm. 2 These polygons are exactly the regular polygons that can be constructed with Conic section, and the regular polygons ...