enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Z-test - Wikipedia

    en.wikipedia.org/wiki/Z-test

    Difference between Z-test and t-test: Z-test is used when sample size is large (n>50), or the population variance is known. t-test is used when sample size is small (n<50) and population variance is unknown. There is no universal constant at which the sample size is generally considered large enough to justify use of the plug-in test.

  3. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    Simple back-of-the-envelope test takes the sample maximum and minimum and computes their z-score, or more properly t-statistic (number of sample standard deviations that a sample is above or below the sample mean), and compares it to the 68–95–99.7 rule: if one has a 3σ event (properly, a 3s event) and substantially fewer than 300 samples, or a 4s event and substantially fewer than 15,000 ...

  4. Standard score - Wikipedia

    en.wikipedia.org/wiki/Standard_score

    Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.

  5. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.

  6. Cochran–Armitage test for trend - Wikipedia

    en.wikipedia.org/wiki/Cochran–Armitage_test_for...

    To test whether allele a is recessive to allele A, the optimal choice is t = (0, 1, 1). To test whether alleles a and A are codominant, the choice t = (0, 1, 2) is locally optimal. For complex diseases, the underlying genetic model is often unknown. In genome-wide association studies, the additive (or codominant) version of the test is often used.

  7. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  8. Mann–Whitney U test - Wikipedia

    en.wikipedia.org/wiki/Mann–Whitney_U_test

    R's statistics base-package implements the test wilcox.test in its "stats" package. The R function wilcoxonZ from the rcompanion package will calculate the z statistic for a Wilcoxon two-sample, paired, or one-sample test. SAS implements the test in its PROC NPAR1WAY procedure. Python has an implementation of this test provided by SciPy. [37]

  9. Student's t-test - Wikipedia

    en.wikipedia.org/wiki/Student's_t-test

    Most test statistics have the form t = Z/s, where Z and s are functions of the data. Z may be sensitive to the alternative hypothesis (i.e., its magnitude tends to be larger when the alternative hypothesis is true), whereas s is a scaling parameter that allows the distribution of t to be determined. As an example, in the one-sample t-test