enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".

  3. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    Typically, however, the one-way ANOVA is used to test for differences among at least three groups, since the two-group case can be covered by a t-test. [56] When there are only two means to compare, the t-test and the ANOVA F-test are equivalent; the relation between ANOVA and t is given by F = t 2.

  4. Multivariate analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Multivariate_analysis_of...

    The image above depicts a visual comparison between multivariate analysis of variance (MANOVA) and univariate analysis of variance (ANOVA). In MANOVA, researchers are examining the group differences of a singular independent variable across multiple outcome variables, whereas in an ANOVA, researchers are examining the group differences of sometimes multiple independent variables on a singular ...

  5. Two-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Two-way_analysis_of_variance

    In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.

  6. ANOVA on ranks - Wikipedia

    en.wikipedia.org/wiki/ANOVA_on_ranks

    In statistics, one purpose for the analysis of variance (ANOVA) is to analyze differences in means between groups. The test statistic, F, assumes independence of observations, homogeneous variances, and population normality. ANOVA on ranks is a statistic designed for situations when the normality assumption has been violated.

  7. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Wallis_test

    The parametric equivalent of the Kruskal–Wallis test is the one-way analysis of variance (ANOVA). A significant Kruskal–Wallis test indicates that at least one sample stochastically dominates one other sample. The test does not identify where this stochastic dominance occurs or for how many pairs of groups stochastic dominance obtains.

  8. ANOVA–simultaneous component analysis - Wikipedia

    en.wikipedia.org/wiki/ANOVA–simultaneous...

    Simultaneous component analysis is mathematically identical to PCA, but is semantically different in that it models different objects or subjects at the same time. The standard notation for a SCA – and PCA – model is: = ′ + where X is the data, T are the component scores and P are the component loadings.

  9. Mauchly's sphericity test - Wikipedia

    en.wikipedia.org/wiki/Mauchly's_sphericity_test

    Developed in 1940 by John W. Mauchly, [3] Mauchly's test of sphericity is a popular test to evaluate whether the sphericity assumption has been violated. The null hypothesis of sphericity and alternative hypothesis of non-sphericity in the above example can be mathematically written in terms of difference scores.