Search results
Results from the WOW.Com Content Network
Yeast artificial chromosomes (YACs) are genetically engineered chromosomes derived from the DNA of the yeast, Saccharomyces cerevisiae, which is then ligated into a bacterial plasmid. By inserting large fragments of DNA, from 100–1000 kb, the inserted sequences can be cloned and physically mapped using a process called chromosome walking .
Yeast artificial chromosomes (YACs) are linear DNA molecules containing the necessary features of an authentic yeast chromosome, including telomeres, a centromere, and an origin of replication. Large inserts of DNA can be ligated into the middle of the YAC so that there is an “arm” of the YAC on either side of the insert.
Artificial chromosome may refer to: Yeast artificial chromosome; Bacterial artificial chromosome; Human artificial chromosome; P1-derived artificial chromosome; Synthetic DNA of a base pair size comparable to a chromosome
Artificial chromosomes are manufactured chromosomes in the context of yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), or human artificial chromosomes (HACs). An artificial chromosome can carry a much larger DNA fragment than other vectors. [9] YACs and BACs can carry a DNA fragment up to 300,000 nucleotides long.
move to sidebar hide. From Wikipedia, the free encyclopedia
The first synthetic yeast chromosome was synthesised in 2014, and entire functional bacterial chromosomes have also been synthesised. [5] In addition, artificial gene synthesis could in the future make use of novel nucleobase pairs (unnatural base pairs). [6] [7] [8]
There are differences in the cloning vectors and techniques used in library preparation, but in general each DNA fragment is uniquely inserted into a cloning vector and the pool of recombinant DNA molecules is then transferred into a population of bacteria (a Bacterial Artificial Chromosome or BAC library) or yeast such that each organism ...
A human artificial chromosome (HAC) is a microchromosome that can act as a new chromosome in a population of human cells. That is, instead of 46 chromosomes, the cell could have 47 with the 47th being very small, roughly 6–10 megabases (Mb) in size instead of 50–250 Mb for natural chromosomes, and able to carry new genes introduced by human researchers.