Search results
Results from the WOW.Com Content Network
The basic rule for divisibility by 4 is that if the number formed by the last two digits in a number is divisible by 4, the original number is divisible by 4; [2] [3] this is because 100 is divisible by 4 and so adding hundreds, thousands, etc. is simply adding another number that is divisible by 4. If any number ends in a two digit number that ...
Informally, the probability that any number is divisible by a prime (or in fact any integer) p is ; for example, every 7th integer is divisible by 7. Hence the probability that two numbers are both divisible by p is 1 p 2 , {\displaystyle {\tfrac {1}{p^{2}}},} and the probability that at least one of them is not is 1 − 1 p ...
Prime numbers have exactly 2 divisors, and highly composite numbers are in bold. 7 is a divisor of 42 because =, so we can say It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2, 3, −3.
[1] [2] Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. [3] [4] E.g., the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7 but the integers 2 and 3 are not because each can only be divided by one and itself.
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively. A related concept is that of a largely composite number , a positive integer that has at least as many divisors as all smaller positive integers.
The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...
7 = 111 2, 13 = 111 3, 31 = 11111 2 = 111 5, 43 = 111 6, 73 = 111 8, 127 = 1111111 2, 157 = 111 12, ... (sequence A085104 in the OEIS ) While the sum of the reciprocals of the prime numbers is a divergent series, the sum of the reciprocals of the Brazilian prime numbers is a convergent series whose value, called the "Brazilian primes constant ...