enow.com Web Search

  1. Ads

    related to: solving logarithmic equations with exponents examples
  2. education.com has been visited by 100K+ users in the past month

    Education.com is great and resourceful - MrsChettyLife

    • Education.com Blog

      See what's new on Education.com,

      explore classroom ideas, & more.

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

Search results

  1. Results from the WOW.Com Content Network
  2. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  3. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    Logarithms are useful for solving equations in which the unknown appears as the exponent of some other quantity. For example, logarithms are used to solve for the half-life , decay constant, or unknown time in exponential decay problems.

  4. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    Exponentiation occurs in many areas of mathematics and its inverse function is often referred to as the logarithm. For example, the logarithm of a matrix is the (multi-valued) inverse function of the matrix exponential. [97] Another example is the p-adic logarithm, the inverse function of the p-adic exponential.

  5. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The Lambert W function is used to solve equations in which the unknown quantity occurs both in the base and in the exponent, or both inside and outside of a logarithm. The strategy is to convert such an equation into one of the form ze z = w and then to solve for z using the W function. For example, the equation = +

  6. Transcendental function - Wikipedia

    en.wikipedia.org/wiki/Transcendental_function

    For example, (+ /) converges to the exponential function , and the infinite sum = ()! turns out to equal the hyperbolic cosine function ⁡. In fact, it is impossible to define any transcendental function in terms of algebraic functions without using some such "limiting procedure" (integrals, sequential limits, and infinite sums are just a few).

  7. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    In 2017, it was proven [15] that there exists a unique function F which is a solution of the equation F(z + 1) = exp(F(z)) and satisfies the additional conditions that F(0) = 1 and F(z) approaches the fixed points of the logarithm (roughly 0.318 ± 1.337i) as z approaches ±i∞ and that F is holomorphic in the whole complex z-plane, except the ...

  8. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.

  9. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Examples include approaches to solving the heat equation, Schrödinger equation, wave equation, and other partial differential equations including a time evolution. The special case of exponentiating the derivative operator to a non-integer power is called the fractional derivative which, together with the fractional integral , is one of the ...

  1. Ads

    related to: solving logarithmic equations with exponents examples