enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...

  3. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  4. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.

  5. Transpose - Wikipedia

    en.wikipedia.org/wiki/Transpose

    In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]

  6. Commutation matrix - Wikipedia

    en.wikipedia.org/wiki/Commutation_matrix

    In other words, vec(A) is the vector obtained by vectorizing A in column-major order. Similarly, vec( A T ) is the vector obtaining by vectorizing A in row-major order. In the context of quantum information theory , the commutation matrix is sometimes referred to as the swap matrix or swap operator [ 1 ]

  7. Transpositions matrix - Wikipedia

    en.wikipedia.org/wiki/Transpositions_matrix

    In [5] are given as examples code of a Matlab functions that creates and matrices for vector of size n = 2, 4, or, 8. Stay open question is it possible to create T r s {\displaystyle Trs} matrices of size, greater than 8.

  8. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    When m = 1, that is when f : R n → R is a scalar-valued function, the Jacobian matrix reduces to the row vector; this row vector of all first-order partial derivatives of f is the transpose of the gradient of f, i.e. =.

  9. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    The vector space of ⁠ ⁠ matrices over ⁠ ⁠ is denoted by ⁠ ⁠. For ⁠ A ∈ K m × n {\displaystyle A\in \mathbb {K} ^{m\times n}} ⁠ , the transpose is denoted ⁠ A T {\displaystyle A^{\operatorname {T} }} ⁠ and the Hermitian transpose (also called conjugate transpose ) is denoted ⁠ A ∗ {\displaystyle A^{*}} ⁠ .