Search results
Results from the WOW.Com Content Network
' pain receptor ') is a sensory neuron that responds to damaging or potentially damaging stimuli by sending "possible threat" signals [1] [2] [3] to the spinal cord and the brain. The brain creates the sensation of pain to direct attention to the body part, so the threat can be mitigated; this process is called nociception.
In physiology, nociception (/ˌnəʊsɪˈsɛpʃ(ə)n/), also nocioception; from Latin nocere 'to harm/hurt') is the sensory nervous system's process of encoding noxious stimuli. It deals with a series of events and processes required for an organism to receive a painful stimulus, convert it to a molecular signal, and recognize and characterize ...
Nociceptin controls a wide range of biological functions ranging from nociception to food intake, from memory processes to cardiovascular and renal functions, from spontaneous locomotor activity to gastrointestinal motility, from anxiety to the control of neurotransmitter release at peripheral and central sites.
Nociceptors are specialised receptors for signals of pain. [4] The sense of touch in perceiving the environment uses special sensory receptors in the skin called cutaneous receptors. They include mechanoreceptors such as tactile corpuscles that relay information about pressure and vibration; nociceptors, and thermoreceptors for temperature ...
Type Aβ fibres, and type Aγ, are the type II afferent fibers from stretch receptors. [1] Type Aβ fibres from the skin are mostly dedicated to touch. However a small fraction of these fast fibres, termed "ultrafast nociceptors", also transmit pain. [6] Type Aδ fibers are the afferent fibers of nociceptors. Aδ fibers carry information from ...
Nociceptin/orphanin FQ (N/OFQ), a 17-amino acid neuropeptide, is the endogenous ligand for the nociceptin receptor (NOP, ORL-1). Nociceptin acts as a potent anti-analgesic, effectively counteracting the effect of pain-relievers; its activation is associated with brain functions such as pain sensation and fear learning.
The vanilloid receptor (VR-1, TRPV1) is a receptor that is found on the free nerve endings of both C and Aδ fibers that responds to elevated levels of heat (>43 °C) and the chemical capsaicin. [10] Capsaicin activates C fibers by opening a ligand -gated ion channel and causing an action potential to occur. [ 10 ]
Free nerve endings can detect temperature, mechanical stimuli (touch, pressure, stretch) or danger (nociception). Thus, different free nerve endings work as thermoreceptors, cutaneous mechanoreceptors and nociceptors. In other words, they express polymodality.