enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".

  3. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    Analysis of variance (ANOVA) is a collection of statistical models and their associated estimation procedures (such as the "variation" among and between groups) used to analyze the differences between groups. It uses F-test by comparing variance between groups and taking noise, or assumed normal distribution of group, into consideration by ...

  4. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    The formula for the one-way ANOVA F-test statistic is =, or =. The "explained variance", or "between-group variability" is = (¯ ¯) / where ¯ denotes the sample mean in the i-th group, is the number of observations in the i-th group, ¯ denotes the overall mean of the data, and denotes the number of groups.

  5. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Wallis_test

    Difference between ANOVA and Kruskal–Wallis test with ranks The Kruskal–Wallis test by ranks, Kruskal–Wallis H {\displaystyle H} test (named after William Kruskal and W. Allen Wallis ), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution.

  6. Brown–Forsythe test - Wikipedia

    en.wikipedia.org/wiki/Brown–Forsythe_test

    When a one-way ANOVA is performed, samples are assumed to have been drawn from distributions with equal variance. If this assumption is not valid, the resulting F -test is invalid. The Brown–Forsythe test statistic is the F statistic resulting from an ordinary one-way analysis of variance on the absolute deviations of the groups or treatments ...

  7. Analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_covariance

    If there was a significant main effect, it means that there is a significant difference between the levels of one categorical IV, ignoring all other factors. [6] To find exactly which levels are significantly different from one another, one can use the same follow-up tests as for the ANOVA.

  8. Newman–Keuls method - Wikipedia

    en.wikipedia.org/wiki/Newman–Keuls_method

    To determine if there is a significant difference between two means with equal sample sizes, the Newman–Keuls method uses a formula that is identical to the one used in Tukey's range test, which calculates the q value by taking the difference between two sample means and dividing it by the standard error:

  9. Tukey's range test - Wikipedia

    en.wikipedia.org/wiki/Tukey's_range_test

    It can be used to correctly interpret the statistical significance of the difference between means that have been selected for comparison because of their extreme values. The method was initially developed and introduced by John Tukey for use in Analysis of Variance (ANOVA), and usually has only been taught in connection with ANOVA.