enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stata - Wikipedia

    en.wikipedia.org/wiki/Stata

    Stata utilizes integer storage types which occupy only one or two bytes rather than four, and single-precision (4 bytes) rather than double-precision (8 bytes) is the default for floating-point numbers. Stata's proprietary output language is known as SMCL, which stands for Stata Markup and Control Language and is pronounced "smickle". [10]

  3. Comparison of statistical packages - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_statistical...

    Product One-way Two-way MANOVA GLM Mixed model Post-hoc Latin squares; ADaMSoft: Yes Yes No No No No No Alteryx: Yes Yes Yes Yes Yes Analyse-it: Yes Yes No

  4. Standardized coefficient - Wikipedia

    en.wikipedia.org/wiki/Standardized_coefficient

    In statistics, standardized (regression) coefficients, also called beta coefficients or beta weights, are the estimates resulting from a regression analysis where the underlying data have been standardized so that the variances of dependent and independent variables are equal to 1. [1]

  5. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others.

  6. Inverse probability weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse_probability_weighting

    One very early weighted estimator is the Horvitz–Thompson estimator of the mean. [3] When the sampling probability is known, from which the sampling population is drawn from the target population, then the inverse of this probability is used to weight the observations. This approach has been generalized to many aspects of statistics under ...

  7. Inverse-variance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse-variance_weighting

    For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().

  8. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    Table 4: Summary of common types of weights used in design effect calculations Weight Type Description Interpretation Frequency weights Each weight is an integer indicating the absolute frequency of an item in the sample Specific value has an absolute meaning; weights represent the amount of information in the dataset Inverse-variance weights

  9. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.