Search results
Results from the WOW.Com Content Network
Anabolism is powered by catabolism, where large molecules are broken down into smaller parts and then used up in cellular respiration. Many anabolic processes are powered by the cleavage of adenosine triphosphate (ATP). [5] Anabolism usually involves reduction and decreases entropy, making it unfavorable without energy input. [6]
Although all chemical reactions are technically reversible, conditions in the cell are often such that it is thermodynamically more favorable for flux to proceed in one direction of a reaction. [8] For example, one pathway may be responsible for the synthesis of a particular amino acid, but the breakdown of that amino acid may occur via a ...
Metabolism (/ m ə ˈ t æ b ə l ɪ z ə m /, from Greek: μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms.The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the ...
This molecule acts as a way for the cell to transfer the energy released by catabolism to the energy-requiring reactions that make up anabolism. Catabolism is a destructive metabolism and anabolism is a constructive metabolism. Catabolism, therefore, provides the chemical energy necessary for the maintenance and growth of cells.
Drug metabolism is the metabolic breakdown of drugs by living organisms, usually through specialized enzymatic systems. More generally, xenobiotic metabolism (from the Greek xenos "stranger" and biotic "related to living beings") is the set of metabolic pathways that modify the chemical structure of xenobiotics, which are compounds foreign to an organism's normal biochemistry, such as any drug ...
The first reaction of the cycle, in which oxaloacetate (a four-carbon compound) condenses with acetate (a two-carbon compound) to form citrate (a six-carbon compound) is typically anabolic. The next few reactions, which are intramolecular rearrangements, produce isocitrate .
In these reactions, NADP + acts like NAD + in other enzymes as an oxidizing agent. [7] The isocitrate dehydrogenase mechanism appears to be the major source of NADPH in fat and possibly also liver cells. [8] These processes are also found in bacteria. Bacteria can also use a NADP-dependent glyceraldehyde 3-phosphate dehydrogenase for the
Here, the enzyme aminoacyl-tRNA-synthetase catalyzes two reactions. In the first one, it attaches an AMP molecule (cleaved from ATP) to the amino acid. The second reaction cleaves the aminoacyl-AMP producing the energy to join the amino acid to the tRNA molecule. [14] Ribosomes have two subunits, one large and one small. These subunits surround ...