Search results
Results from the WOW.Com Content Network
Any two equilateral triangles are similar. Two triangles, both similar to a third triangle, are similar to each other (transitivity of similarity of triangles). Corresponding altitudes of similar triangles have the same ratio as the corresponding sides. Two right triangles are similar if the hypotenuse and one other side have lengths in the ...
Proof using similar triangles. This proof is based on the proportionality of the sides of three similar triangles, that is, upon the fact that the ratio of any two corresponding sides of similar triangles is the same regardless of the size of the triangles. Let ABC represent a right triangle, with the right angle located at C, as shown on the ...
Consider a triangle ABC.Let the angle bisector of angle ∠ A intersect side BC at a point D between B and C.The angle bisector theorem states that the ratio of the length of the line segment BD to the length of segment CD is equal to the ratio of the length of side AB to the length of side AC:
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
Any similar triangles have the property that if we select the same angle in all of them, the ratio of the two sides defining the angle is the same regardless of which similar triangle is selected, regardless of its actual size: the ratios depend upon the three angles, not the lengths of the sides. Thus for either of the similar right triangles ...
All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them. The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse.
The sides in this triangle are in the ratio 1 : 1 : √ 2, which follows immediately from the Pythagorean theorem. Of all right triangles, such 45° - 45° - 90° degree triangles have the smallest ratio of the hypotenuse to the sum of the legs, namely √ 2 / 2 .
The midpoint theorem generalizes to the intercept theorem, where rather than using midpoints, both sides are partitioned in the same ratio. [1] [2] The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle.