enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    The neutron has a mean-square radius of about 0.8 × 10 −15 m, or 0.8 fm, [56] and it is a spin-½ fermion. [57] The neutron has no measurable electric charge. With its positive electric charge, the proton is directly influenced by electric fields, whereas the neutron is unaffected by electric fields. [58]

  3. Charge radius - Wikipedia

    en.wikipedia.org/wiki/Charge_radius

    The rms charge radius is a measure of the size of an atomic nucleus, particularly the proton distribution. The proton radius is about one femtometre = 10 −15 metre. It can be measured by the scattering of electrons by the nucleus. Relative changes in the mean squared nuclear charge distribution can be precisely measured with atomic spectroscopy.

  4. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    The neutron has a positively charged core of radius ≈ 0.3 fm surrounded by a compensating negative charge of radius between 0.3 fm and 2 fm. The proton has an approximately exponentially decaying positive charge distribution with a mean square radius of about 0.8 fm. [15]

  5. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    Nuclear reactions may be shown in a form similar to chemical equations, for which invariant mass must balance for each side of the equation, and in which transformations of particles must follow certain conservation laws, such as conservation of charge and baryon number (total atomic mass number). An example of this notation follows:

  6. Shape of the atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_atomic_nucleus

    The proton's RMS charge radius of 0.8414 fm only defines the spatial extent of its charge distribution, i.e. the distance from its center of mass to its farthest point. Examination of the angular dependence of the charge distribution indicates that the proton is not a perfect sphere.

  7. Nucleon - Wikipedia

    en.wikipedia.org/wiki/Nucleon

    The neutron's magnetic moment is μ n = −1.91 μ N, whereas, since the neutron lacks an electric charge, it should have no magnetic moment. The value of the neutron's magnetic moment is negative because the direction of the moment is opposite to the neutron's spin. The nucleon magnetic moments arise from the quark substructure of the nucleons.

  8. Beta decay - Wikipedia

    en.wikipedia.org/wiki/Beta_decay

    The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.

  9. Atomic form factor - Wikipedia

    en.wikipedia.org/wiki/Atomic_form_factor

    X-ray atomic form factors of oxygen (blue), chlorine (green), Cl − (magenta), and K + (red); smaller charge distributions have a wider form factor.. In physics, the atomic form factor, or atomic scattering factor, is a measure of the scattering amplitude of a wave by an isolated atom.