enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is,

  3. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    A prime number (or prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself. By Euclid's theorem , there are an infinite number of prime numbers. Subsets of the prime numbers may be generated with various formulas for primes .

  4. List of largest known primes and probable primes - Wikipedia

    en.wikipedia.org/wiki/List_of_largest_known...

    These numbers have been proved prime by computer with a primality test for their form, for example the Lucas–Lehmer primality test for Mersenne numbers. “!” is the factorial, “#” is the primorial, and () is the third cyclotomic polynomial, defined as + +.

  5. Double Mersenne number - Wikipedia

    en.wikipedia.org/wiki/Double_Mersenne_number

    Since a Mersenne number M p can be prime only if p is prime, (see Mersenne prime for a proof), a double Mersenne number can be prime only if M p is itself a Mersenne prime. For the first values of p for which M p is prime, M M p {\displaystyle M_{M_{p}}} is known to be prime for p = 2, 3, 5, 7 while explicit factors of M M p {\displaystyle M_{M ...

  6. Factorial prime - Wikipedia

    en.wikipedia.org/wiki/Factorial_prime

    (resulting in 24 factorial primes - the prime 2 is repeated) No other factorial primes are known as of December 2024 [update] . When both n ! + 1 and n ! − 1 are composite , there must be at least 2 n + 1 consecutive composite numbers around n !, since besides n ! ± 1 and n ! itself, also, each number of form n ! ± k is divisible by k for 2 ...

  7. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    This approximation is good to more than 8 decimal digits for z with a real part greater than 8. Robert H. Windschitl suggested it in 2002 for computing the gamma function with fair accuracy on calculators with limited program or register memory. [13]

  8. 2,147,483,647 - Wikipedia

    en.wikipedia.org/wiki/2,147,483,647

    By 1772, Leonhard Euler had proven that 2,147,483,647 is a prime. The number 2147483647 is the eighth Mersenne prime, equal to 2 31 − 1. It is one of only four known double Mersenne primes. [1] The primality of this number was proven by Leonhard Euler, who reported the proof in a letter to Daniel Bernoulli written in 1772. [2]

  9. 384 (number) - Wikipedia

    en.wikipedia.org/wiki/384_(number)

    384 is: . the sum of a twin prime pair (191 + 193).; the sum of six consecutive primes (53 + 59 + 61 + 67 + 71 + 73). the order of the hyperoctahedral group for n = 4; the double factorial of 8.