Search results
Results from the WOW.Com Content Network
AI-based images have become more commonplace in art markets and search engines because AI-based text-to-image systems are trained from pre-existing artistic images, sometimes without the original artist's consent, allowing the software to mimic specific artists' styles.
Artificial Intelligence projects can have their ethical permissibility tested while designing, developing, and implementing an AI system. An AI framework such as the Care and Act Framework containing the SUM values—developed by the Alan Turing Institute tests projects in four main areas: [316] [317] Respect the dignity of individual people
The capabilities of a generative AI system depend on the modality or type of the data set used. Generative AI can be either unimodal or multimodal; unimodal systems take only one type of input, whereas multimodal systems can take more than one type of input. [59] For example, one version of OpenAI's GPT-4 accepts both text and image inputs. [60]
Additional use-cases for image modification via img2img are offered by numerous front-end implementations of the Stable Diffusion model. Inpainting involves selectively modifying a portion of an existing image delineated by a user-provided layer mask, which fills the masked space with newly generated content based on the provided prompt. [50]
An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.
Micron Technology (NASDAQ: MU) is best known as a supplier of memory chips, but these days, the company is seeing a surge in demand from AI, like many of its peers.
Ideogram is a freemium text-to-image model developed by Ideogram, Inc. using deep learning methodologies to generate digital images from natural language descriptions known as prompts. The model is capable of generating legible text in the images compared to other text-to-image models. [1] [2]
General scheme of content-based image retrieval. Content-based image retrieval, also known as query by image content and content-based visual information retrieval (CBVIR), is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases (see this survey [1] for a scientific overview of the CBIR field).