enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laminated veneer lumber - Wikipedia

    en.wikipedia.org/wiki/Laminated_veneer_lumber

    It is typically used for headers, beams, rimboard, and edge-forming material. LVL offers several advantages over typical milled lumber: Made in a factory under controlled specifications, it is stronger, straighter, and more uniform. Due to its composite nature, it is much less likely than conventional lumber to warp, twist, bow, or shrink.

  3. Parallel-strand lumber - Wikipedia

    en.wikipedia.org/wiki/Parallel-strand_lumber

    The beams are continuously formed, so the length of the beam is limited only to the maximum length that can be handled and transported. Typical widths are 3 + 1 ⁄ 2, 5 + 1 ⁄ 4 or 7 inches (89, 133 or 178 mm); typical depths are 9 + 1 ⁄ 2, 11 + 7 ⁄ 8, 14, 16 and 18 inches (240, 300, 360, 410 and 460 mm). Typically the beams are made to a ...

  4. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    Using these integration rules makes the calculation of the deflection of Euler-Bernoulli beams simple in situations where there are multiple point loads and point moments. The Macaulay method predates more sophisticated concepts such as Dirac delta functions and step functions but achieves the same outcomes for beam problems.

  5. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    In this case, the equation governing the beam's deflection can be approximated as: = () where the second derivative of its deflected shape with respect to (being the horizontal position along the length of the beam) is interpreted as its curvature, is the Young's modulus, is the area moment of inertia of the cross-section, and is the internal ...

  6. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    The Timoshenko–Ehrenfest beam theory was developed by Stephen Timoshenko and Paul Ehrenfest [1] [2] [3] early in the 20th century.

  7. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    Non-circular cross-sections always have warping deformations that require numerical methods to allow for the exact calculation of the torsion constant. [2] The torsional stiffness of beams with non-circular cross sections is significantly increased if the warping of the end sections is restrained by, for example, stiff end blocks. [3]

  8. Sandwich theory - Wikipedia

    en.wikipedia.org/wiki/Sandwich_theory

    After solving the differential equation for the normal forces in the cover sheets for a single span beam under a given load, the energy method can be used to expand the approach for the calculation of multi-span beams. Sandwich continuous beam with flexible cover sheets can also be laid on top of each other when using this technique.

  9. Attenuation coefficient - Wikipedia

    en.wikipedia.org/wiki/Attenuation_coefficient

    The attenuation coefficient of a volume, denoted μ, is defined as [6] =, where Φ e is the radiant flux;; z is the path length of the beam.; Note that for an attenuation coefficient which does not vary with z, this equation is solved along a line from =0 to as: