Search results
Results from the WOW.Com Content Network
The algorithm can be modified by performing multiple levels of jump search on the sublists, before finally performing the linear search. For a k-level jump search the optimum block size m l for the l th level (counting from 1) is n (k-l)/k. The modified algorithm will perform k backward jumps and runs in O(kn 1/(k+1)) time.
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology. It defines a large number of terms relating to algorithms and data structures. For algorithms and data structures not necessarily mentioned here, see list of algorithms and list of data structures.
A schematic picture of the skip list data structure. Each box with an arrow represents a pointer and a row is a linked list giving a sparse subsequence; the numbered boxes (in yellow) at the bottom represent the ordered data sequence. Searching proceeds downwards from the sparsest subsequence at the top until consecutive elements bracketing the ...
Dijkstra's algorithm; Disjoint-set data structure; Double hashing; Dynamic perfect hashing; E. ... Johnson's algorithm; Jump point search; Jump search; K. K ...
In computer science, jump point search (JPS) is an optimization to the A* search algorithm for uniform-cost grids. It reduces symmetries in the search procedure by means of graph pruning, [1] eliminating certain nodes in the grid based on assumptions that can be made about the current node's neighbors, as long as certain conditions relating to the grid are satisfied.
Using such data structure helps us jump halfway up the tree from any given node. When the algorithm is asked to process a query, we repeatedly jump up the tree using these pointers. The number of jumps will be at most log n and therefore queries can be answered in log n time.
Pointer jumping or path doubling is a design technique for parallel algorithms that operate on pointer structures, such as linked lists and directed graphs. Pointer jumping allows an algorithm to follow paths with a time complexity that is logarithmic with respect to the length of the longest path. It does this by "jumping" to the end of the ...
Algorithms + Data Structures = Programs [1] is a 1976 book written by Niklaus Wirth covering some of the fundamental topics of system engineering, computer programming, particularly that algorithms and data structures are inherently related. For example, if one has a sorted list one will use a search algorithm optimal for sorted lists.