Search results
Results from the WOW.Com Content Network
[14] The speed and course of the target could be computed using the distance the target traveled over an interval of time. During the latter part of World War II, the speed of the target could be measured using radar data. Radar provided accurate bearing rate, range, and radial speed, which was converted to target course and speed.
The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil (and any two-dimensional body including circular cylinders) translating in a uniform fluid at a constant speed so large that the flow seen in the body-fixed frame is steady and unseparated.
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
Here is an unknown function (scalar or vector) of time , which we would like to approximate; we are told that , the rate at which changes, is a function of and of itself. At the initial time t 0 {\displaystyle t_{0}} the corresponding y {\displaystyle y} value is y 0 {\displaystyle y_{0}} .
and the cross-product is a pseudovector i.e. if r and p are reversed in direction (negative), L is not. In general I is an order-2 tensor, see above for its components. The dot · indicates tensor contraction. Force and Newton's 2nd law: Resultant force acts on a system at the center of mass, equal to the rate of change of momentum:
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
For mathematical consistency, Lorentz proposed a new time variable, the "local time", called that because it depended on the position of a moving body, following the relation t ′ = t − vx/c 2. [8] Lorentz considered local time not to be "real"; rather, it represented an ad hoc change of variable. [9]: 51, 80