Search results
Results from the WOW.Com Content Network
We can reduce the fractions to lowest terms by noting that the two occurrences of b on the left-hand side cancel, as do the two occurrences of d on the right-hand side, leaving =, and we can divide both sides of the equation by any of the elements—in this case we will use d —getting =.
The three fingers on the left hand represent 10+10+10 = 30; the thumb and one finger on the right hand represent 5+1=6. Counting from 1 to 20 in Chisanbop. Each finger has a value of one, while the thumb has a value of five. Therefore each hand can represent the digits 0-9, rather than the usual 0-5.
On currently available processors, a bit-wise shift instruction is usually (but not always) faster than a multiply instruction and can be used to multiply (shift left) and divide (shift right) by powers of two. Multiplication by a constant and division by a constant can be implemented using a sequence of shifts and adds or subtracts. For ...
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
This slide rule is positioned to yield several values: From C scale to D scale (multiply by 2), from D scale to C scale (divide by 2), A and B scales (multiply and divide by 4), A and D scales (squares and square roots). In addition to the logarithmic scales, some slide rules have other mathematical functions encoded on other auxiliary scales.
A compound fraction is a fraction of a fraction, or any number of fractions connected with the word of, [22] [23] corresponding to multiplication of fractions. To reduce a compound fraction to a simple fraction, just carry out the multiplication (see § Multiplication).
The most straightforward method is to multiply through by the common denominator q(x). We then obtain an equation of polynomials whose left-hand side is simply p(x) and whose right-hand side has coefficients which are linear expressions of the constants A ir, B ir, and C ir. Since two polynomials are equal if and only if their corresponding ...
Since 9 = 10 − 1, to multiply a number by nine, multiply it by 10 and then subtract the original number from the result. For example, 9 × 27 = 270 − 27 = 243. This method can be adjusted to multiply by eight instead of nine, by doubling the number being subtracted; 8 × 27 = 270 − (2×27) = 270 − 54 = 216.