Search results
Results from the WOW.Com Content Network
William Thomson, 1st Baron Kelvin (26 June 1824 – 17 December 1907 [7]), was a British mathematician, mathematical physicist and engineer. [8] [9] Born in Belfast, he was the professor of Natural Philosophy at the University of Glasgow for 53 years, where he undertook significant research and mathematical analysis of electricity, was instrumental in the formulation of the first and second ...
The first tide predicting machine (TPM) was built in 1872 by the Légé Engineering Company. [11] A model of it was exhibited at the British Association meeting in 1873 [12] (for computing 8 tidal components), followed in 1875-76 by a machine on a slightly larger scale (for computing 10 tidal components), was designed by Sir William Thomson (who later became Lord Kelvin). [13]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The Kelvin equation describes the change in vapour pressure due to a curved liquid–vapor interface, such as the surface of a droplet. The vapor pressure at a convex curved surface is higher than that at a flat surface. The Kelvin equation is dependent upon thermodynamic principles and does not allude to special properties of materials.
Cable theory in computational neuroscience has roots leading back to the 1850s, when Professor William Thomson (later known as Lord Kelvin) began developing mathematical models of signal decay in submarine (underwater) telegraphic cables. The models resembled the partial differential equations used by Fourier to describe heat conduction in a wire.
In 1855, Lord Kelvin formulated a diffusion model of the current in a submarine cable. The model correctly predicted the poor performance of the 1858 trans-Atlantic submarine telegraph cable. In 1885, Heaviside published the first papers that described his analysis of propagation in cables and the modern form of the telegrapher's equations. [7]
The heat death paradox, also known as thermodynamic paradox, Clausius' paradox, and Kelvin's paradox, [1] is a reductio ad absurdum argument that uses thermodynamics to show the impossibility of an infinitely old universe. It was formulated in February 1862 by Lord Kelvin and expanded upon by Hermann von Helmholtz and William John Macquorn ...
Note that h is the depth of the fluid (similar to the equivalent depth and analogous to H in the primitive equations listed above for Rossby-gravity and Kelvin waves), K T is temperature diffusion, K E is eddy diffusivity, and τ is the wind stress in either the x or y directions.