Search results
Results from the WOW.Com Content Network
Pandas (styled as pandas) is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series. It is free software released under the three-clause BSD license. [2]
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
Dask provides a familiar user interface by mirroring the APIs of other libraries in the PyData ecosystem including: Pandas, scikit-learn and NumPy. It also exposes low-level APIs that help programmers run custom algorithms in parallel. Dask was created by Matthew Rocklin [2] in December 2014 [3] and has over 9.8k stars and 500 contributors on ...
The iris data set is widely used as a beginner's dataset for machine learning purposes. The dataset is included in R base and Python in the machine learning library scikit-learn, so that users can access it without having to find a source for it. Several versions of the dataset have been published. [8]
Exploratory data analysis is a technique to analyze and investigate a dataset and summarize its main characteristics. A main advantage of EDA is providing the visualization of data after conducting analysis. Tukey's championing of EDA encouraged the development of statistical computing packages, especially S at Bell Labs. [4]
Pandas – High-performance computing (HPC) data structures and data analysis tools for Python in Python and Cython (statsmodels, scikit-learn) Perl Data Language – Scientific computing with Perl; Ploticus – software for generating a variety of graphs from raw data; PSPP – A free software alternative to IBM SPSS Statistics
Because both orientations represent the same data, it is possible to convert a row-oriented dataset to a column-oriented dataset and vice versa at the expense of compute. In particular, advanced query engines often leverage each orientation's advantages, and convert from one orientation to the other as part of their execution.
To use k-anonymity to process a dataset so that it can be released with privacy protection, a data scientist must first examine the dataset and decide whether each attribute (column) is an identifier (identifying), a non-identifier (not-identifying), or a quasi-identifier (somewhat identifying).