Search results
Results from the WOW.Com Content Network
The binding of a ligand to the receptor causes a conformation change in the receptor. This conformation change can affect the activity of the receptor and result in the production of active second messengers. [citation needed] In the case of G protein-coupled receptors, the conformation change exposes a binding site for a G-protein.
Two molecular mechanisms for synaptic plasticity involve the NMDA and AMPA glutamate receptors. Opening of NMDA channels (which relates to the level of cellular depolarization) leads to a rise in post-synaptic Ca 2+ concentration and this has been linked to long-term potentiation, LTP (as well as to protein kinase activation); strong depolarization of the post-synaptic cell completely ...
Receptor Phosphorylation is another type of receptor down-regulation. Biochemical changes can reduce receptor affinity for a ligand. [41] Reducing the sensitivity of the receptor is a result of receptors being occupied for a long time. This results in a receptor adaptation in which the receptor no longer responds to the signaling molecule.
Calcium is a ubiquitous second messenger with wide-ranging physiological roles. [3] These include muscle contraction , neuronal transmission (as in an excitatory synapse ), cellular motility (including the movement of flagella and cilia ), fertilization , cell growth (proliferation), neurogenesis , learning and memory as with synaptic ...
Kainate receptors are expressed in a variety of brain regions and are involved in processes such as sensory processing, motor control, and learning and memory. Each subtype of glutamate receptor has a unique function and plays a crucial role in neuronal communication and plasticity. [14]
The KEGG PATHWAY database is a collection of manually drawn pathway maps for metabolism, genetic information processing, environmental information processing such as signal transduction, ligand–receptor interaction and cell communication, various other cellular processes and human diseases, all based on extensive survey of published literature.
Memory allocation is a process that determines which specific synapses and neurons in a neural network will store a given memory. [ 1 ] [ 2 ] [ 3 ] Although multiple neurons can receive a stimulus, only a subset of the neurons will induce the necessary plasticity for memory encoding.
G protein-coupled receptors (GPCRs) are a large family of integral membrane proteins that respond to a variety of extracellular stimuli. Each GPCR binds to and is activated by a specific ligand stimulus that ranges in size from small molecule catecholamines, lipids, or neurotransmitters to large protein hormones. [3]