Search results
Results from the WOW.Com Content Network
Subband coding resides at the heart of the popular MP3 format (more properly known as MPEG-1 Audio Layer III), for example. Sub-band coding is used in the G.722 codec which uses sub-band adaptive differential pulse code modulation (SB-ADPCM) within a bit rate of 64 kbit/s. In the SB-ADPCM technique, the frequency band is split into two sub ...
Then, the appropriate sum and difference of different subbands (LL, LH, HL, HH) give oriented wavelets, a total of 6 in all. The figure shows the Fourier support of all 6 oriented wavelets obtained by a 2-D real oriented dual tree CWT. Similarly, in 3-D, 4 separable 3-D DWTs in parallel are needed and a total of 28 oriented wavelets are obtained.
The wavelets are scaled and translated copies (known as "daughter wavelets") of a finite-length or fast-decaying oscillating waveform (known as the "mother wavelet"). Wavelet transforms have advantages over traditional Fourier transforms for representing functions that have discontinuities and sharp peaks, and for accurately deconstructing and ...
Originally known as optimal subband tree structuring (SB-TS), also called wavelet packet decomposition (WPD; sometimes known as just wavelet packets or subband tree), is a wavelet transform where the discrete-time (sampled) signal is passed through more filters than the discrete wavelet transform (DWT).
Lifting sequence consisting of two steps. The lifting scheme is a technique for both designing wavelets and performing the discrete wavelet transform (DWT). In an implementation, it is often worthwhile to merge these steps and design the wavelet filters while performing the wavelet transform.
Embedded zerotree wavelet algorithm (EZW) as developed by J. Shapiro in 1993, enables scalable image transmission and decoding. It is based on four key concepts: first, it should be a discrete wavelet transform or hierarchical subband decomposition; second, it should predict the absence of significant information when exploring the self-similarity inherent in images; third, it has entropy ...
Spectrum of the Meyer wavelet (numerically computed). The Meyer wavelet is an orthogonal wavelet proposed by Yves Meyer. [1] As a type of a continuous wavelet, it has been applied in a number of cases, such as in adaptive filters, [2] fractal random fields, [3] and multi-fault classification.
Wavelets have some slight benefits over Fourier transforms in reducing computations when examining specific frequencies. However, they are rarely more sensitive, and indeed, the common Morlet wavelet is mathematically identical to a short-time Fourier transform using a Gaussian window function. [ 13 ]