Search results
Results from the WOW.Com Content Network
Calcium graphite CaC 6 is obtained by immersing highly oriented pyrolytic graphite in liquid Li–Ca alloy for 10 days at 350 °C. The crystal structure of CaC 6 belongs to the R 3 m space group. The graphite interlayer distance increases upon Ca intercalation from 3.35 to 4.524 Å, and the carbon-carbon distance increases from 1.42 to 1.444 Å.
The expanded graphite can be used to make graphite foil or used directly as a "hot top" compound to insulate molten metal in a ladle or red-hot steel ingots and decrease heat loss, or as firestops fitted around a fire door or in sheet metal collars surrounding plastic pipe (during a fire, the graphite expands and chars to resist fire ...
The Laves graph or K 4 crystal is a theoretically predicted three-dimensional crystalline metastable carbon structure in which each carbon atom is bonded to three others, at 120° angles (like graphite), but where the bond planes of adjacent layers lie at an angle of 70.5°, rather than coinciding.
In order to properly form the spherical-shaped nodules of graphite (called temper graphite nodules or temper carbon nodules) in the annealing process, care must be taken to ensure that the iron casting will solidify with an entirely white iron cross section. Thicker sections of a casting will cool slowly, allowing some primary graphite to form ...
The structure of graphite was solved in 1916 [40] by the related method of powder diffraction, [41] which was developed by Peter Debye and Paul Scherrer and, independently, by Albert Hull in 1917. [42] The structure of graphite was determined from single-crystal diffraction in 1924 by two groups independently.
To produce expandable graphite, natural graphite flakes are treated in a bath of acid and oxidizing agent.Usually used oxidizing agents are hydrogen peroxide, potassium permanganate or chromic acid. Concentrated sulphuric acid or nitric acid are usually used as the compound to be incorporated, with the reaction taking place at temperatures of ...
Compacted graphite iron (CGI), also known as vermicular graphite iron (GJV, VG, [1] JV [2] or GGV from the German: "Gusseisen mit Vermiculargraphit" [3]) especially in non-English speaking countries, [4] is a metal which is gaining popularity in applications that require either greater strength, or lower weight than cast iron.
The structure and properties of graphite oxide depend on the particular synthesis method and degree of oxidation. [11] [12] It typically preserves the layer structure of the parent graphite, but the layers are buckled and the interlayer spacing is about two times larger (~0.7 nm) than that of graphite. Strictly speaking "oxide" is an incorrect ...