Search results
Results from the WOW.Com Content Network
Increasing the substrate concentration increases the rate of reaction (enzyme activity). However, enzyme saturation limits reaction rates. An enzyme is saturated when the active sites of all the molecules are occupied most of the time. At the saturation point, the reaction will not speed up, no matter how much additional substrate is added.
The enzyme unit, or international unit for enzyme (symbol U, sometimes also IU) is a unit of enzyme's catalytic activity. [1]1 U (μmol/min) is defined as the amount of the enzyme that catalyzes the conversion of one micro mole of substrate per minute under the specified conditions of the assay method.
In enzyme kinetics, the reaction rate is measured and the effects of varying the conditions of the reaction are investigated. Studying an enzyme's kinetics in this way can reveal the catalytic mechanism of this enzyme, its role in metabolism, how its activity is controlled, and how a drug or a modifier (inhibitor or activator) might affect the ...
The increase of absorbance at 595 nm is proportional to the amount of bound dye, and thus to the amount (concentration) of protein present in the sample. [ 6 ] Unlike other protein assays, the Bradford protein assay is less susceptible to interference by various chemical compounds such as sodium, potassium or even carbohydrates like sucrose ...
A decade before Michaelis and Menten, Victor Henri found that enzyme reactions could be explained by assuming a binding interaction between the enzyme and the substrate. [11] His work was taken up by Michaelis and Menten, who investigated the kinetics of invertase, an enzyme that catalyzes the hydrolysis of sucrose into glucose and fructose. [12]
The katal (symbol: kat) is that catalytic activity that will raise the rate of conversion by one mole per second in a specified assay system. [1] It is a unit of the International System of Units (SI) [1] used for quantifying the catalytic activity of enzymes (that is, measuring the enzymatic activity level in enzyme catalysis) and other catalysts.
It is important to keep in mind that assay conditions can alter metabolic activity and thus tetrazolium dye reduction without affecting cell viability. [13] In addition, the mechanism of reduction of tetrazolium dyes, i.e. intracellular (MTT, MTS) vs. extracellular (WST-1), will also determine the amount of product.
This compound is chosen because the enzyme facilitates the reaction with hydrogen peroxide, turning it into a green and soluble end-product. Its new absorbance maximum of 420 nm light (ε = 3.6 × 10 4 M –1 cm –1 ) [ 2 ] can easily be followed with a spectrophotometer , a common laboratory instrument.