enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    For example, ln 7.5 is 2.0149..., because e 2.0149... = 7.5. The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1 ...

  3. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed.Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution.

  4. Logarithm of a matrix - Wikipedia

    en.wikipedia.org/wiki/Logarithm_of_a_matrix

    The exponential of a matrix A is defined by =!. Given a matrix B, another matrix A is said to be a matrix logarithm of B if e A = B.. Because the exponential function is not bijective for complex numbers (e.g. = =), numbers can have multiple complex logarithms, and as a consequence of this, some matrices may have more than one logarithm, as explained below.

  5. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    An alternative formula for ! using the gamma function is ! =. (as can be seen by repeated integration by parts). Rewriting and changing variables x = ny , one obtains n ! = ∫ 0 ∞ e n ln ⁡ x − x d x = e n ln ⁡ n n ∫ 0 ∞ e n ( ln ⁡ y − y ) d y . {\displaystyle n!=\int _{0}^{\infty }e^{n\ln x-x}\,{\rm {d}}x=e^{n\ln n}n\int _{0 ...

  6. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  7. Prime-counting function - Wikipedia

    en.wikipedia.org/wiki/Prime-counting_function

    Using this approach, Meissel computed π(x), for x equal to 5 × 10 5, 10 6, 10 7, and 10 8. In 1959, Derrick Henry Lehmer extended and simplified Meissel's method. Define, for real m and for natural numbers n and k , P k ( m , n ) as the number of numbers not greater than m with exactly k prime factors, all greater than p n .

  8. Euler's constant - Wikipedia

    en.wikipedia.org/wiki/Euler's_constant

    Using the same approach, in 2013, M. Ram Murty and A. Zaytseva showed that the generalized Euler constants have the same property, [3] [44] [45] where the generalized Euler constant are defined as = (= ⁡ = ()), where ⁠ ⁠ is a fixed list of prime numbers, () = if at least one of the primes in ⁠ ⁠ is a prime factor of ⁠ ⁠, and ...

  9. Logarithmic integral function - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_integral_function

    The asymptotic behavior for x → ∞ is ⁡ = (⁡). where is the big O notation.The full asymptotic expansion is ⁡ ⁡ =! (⁡)or ⁡ / ⁡ + ⁡ + (⁡) + (⁡) +. This gives the following more accurate asymptotic behaviour: