enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    The performance of machine learning algorithms is commonly visualized by learning curve plots that show estimates of the ... For leave-one-out stability in ...

  3. Stability (learning theory) - Wikipedia

    en.wikipedia.org/wiki/Stability_(learning_theory)

    A stable learning algorithm is one for which the prediction does not change much when the training data is modified slightly. For instance, consider a machine learning algorithm that is being trained to recognize handwritten letters of the alphabet, using 1000 examples of handwritten letters and their labels ("A" to "Z") as a training set. One ...

  4. In-place algorithm - Wikipedia

    en.wikipedia.org/wiki/In-place_algorithm

    Identifying the in-place algorithms with L has some interesting implications; for example, it means that there is a (rather complex) in-place algorithm to determine whether a path exists between two nodes in an undirected graph, [3] a problem that requires O(n) extra space using typical algorithms such as depth-first search (a visited bit for ...

  5. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  8. Multiplicative weight update method - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_Weight...

    In this case, player allocates higher weight to the actions that had a better outcome and choose his strategy relying on these weights. In machine learning, Littlestone applied the earliest form of the multiplicative weights update rule in his famous winnow algorithm, which is similar to Minsky and Papert's earlier perceptron learning algorithm ...

  9. Relief (feature selection) - Wikipedia

    en.wikipedia.org/wiki/Relief_(feature_selection)

    Relief algorithm: Selection of nearest hit, and nearest miss instance neighbors prior to scoring. Take a data set with n instances of p features, belonging to two known classes. Within the data set, each feature should be scaled to the interval [0 1] (binary data should remain as 0 and 1). The algorithm will be repeated m times.