Search results
Results from the WOW.Com Content Network
In computer science, a stable sorting algorithm preserves the order of records with equal keys. In numerical analysis, a numerically stable algorithm avoids magnifying small errors. An algorithm is stable if the result produced is relatively insensitive to perturbations during computation.
This algorithm is guaranteed to produce a stable marriage for all participants in time where is the number of men or women. [11] Among all possible different stable matchings, it always yields the one that is best for all men among all stable matchings, and worst for all women. [12]
Sorting algorithms are prevalent in introductory computer science classes, where the abundance of algorithms for the problem provides a gentle introduction to a variety of core algorithm concepts, such as big O notation, divide-and-conquer algorithms, data structures such as heaps and binary trees, randomized algorithms, best, worst and average ...
An algorithm for solving a linear evolutionary partial differential equation is stable if the total variation of the numerical solution at a fixed time remains bounded as the step size goes to zero. The Lax equivalence theorem states that an algorithm converges if it is consistent and stable (in this sense).
Timsort is a hybrid, stable sorting algorithm, derived from merge sort and insertion sort, designed to perform well on many kinds of real-world data. It was implemented by Tim Peters in 2002 for use in the Python programming language. The algorithm finds subsequences of the data that are already ordered (runs) and uses them to sort the ...
Stable sorting algorithms maintain the relative order of records with equal keys (i.e. values). That is, a sorting algorithm is stable if whenever there are two records R and S with the same key and with R appearing before S in the original list, R will appear before S in the sorted list.
In mathematics, economics and computer science, particularly in the fields of combinatorics, game theory and algorithms, the stable-roommate problem (SRP) is the problem of finding a stable matching for an even-sized set. A matching is a separation of the set into disjoint pairs ("roommates").
A stable learning algorithm would produce a similar classifier with both the 1000-element and 999-element training sets. Stability can be studied for many types of learning problems, from language learning to inverse problems in physics and engineering, as it is a property of the learning process rather than the type of information being learned.