Search results
Results from the WOW.Com Content Network
It includes the Zero Redundancy Optimizer (ZeRO) for training models with 1 trillion or more parameters. [4] Features include mixed precision training, single-GPU, multi-GPU, and multi-node training as well as custom model parallelism. The DeepSpeed source code is licensed under MIT License and available on GitHub. [5]
The code-rate is hence a real number. A low code-rate close to zero implies a strong code that uses many redundant bits to achieve a good performance, while a large code-rate close to 1 implies a weak code. The redundant bits that protect the information have to be transferred using the same communication resources that they are trying to protect.
Paul Hsieh's SuperFastHash [1] 32 bits Buzhash: variable XOR/table Fowler–Noll–Vo hash function (FNV Hash) 32, 64, 128, 256, 512, or 1024 bits xor/product or product/XOR Jenkins hash function: 32 or 64 bits XOR/addition Bernstein's hash djb2 [2] 32 or 64 bits shift/add or mult/add or shift/add/xor or mult/xor PJW hash / Elf Hash: 32 or 64 bits
LDPC codes have no limitations of minimum distance, [35] that indirectly means that LDPC codes may be more efficient on relatively large code rates (e.g. 3/4, 5/6, 7/8) than turbo codes. However, LDPC codes are not the complete replacement: turbo codes are the best solution at the lower code rates (e.g. 1/6, 1/3, 1/2).
A checksum of a message is a modular arithmetic sum of message code words of a fixed word length (e.g., byte values). The sum may be negated by means of a ones'-complement operation prior to transmission to detect unintentional all-zero messages. Checksum schemes include parity bits, check digits, and longitudinal redundancy checks.
Moore Threads Technology Co. Ltd (Chinese: 摩尔线程) is a Chinese technology company specializing in graphics processing unit (GPU) design, established in October 2020 by Zhang Jianzhong (张建中), the former global vice-president of Nvidia and general manager of Nvidia China. [1]
As an example of implementing polynomial division in hardware, suppose that we are trying to compute an 8-bit CRC of an 8-bit message made of the ASCII character "W", which is binary 01010111 2, decimal 87 10, or hexadecimal 57 16.
The Reed–Solomon code is a [n, k, n − k + 1] code; in other words, it is a linear block code of length n (over F) with dimension k and minimum Hamming distance = + The Reed–Solomon code is optimal in the sense that the minimum distance has the maximum value possible for a linear code of size ( n , k ); this is known as the Singleton bound .