enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    generates a pseudo-random number between 0 and UINT32_MAX, usually using a better algorithm than rand: arc4random_uniform: generates a pseudo-random number between 0 and a maximum value. arc4random_buf: fill a buffer with a pseudo-random bitstream. arc4random_stir: initializes a pseudo-random number generator.

  3. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    For Monte Carlo simulations, an LCG must use a modulus greater and preferably much greater than the cube of the number of random samples which are required. This means, for example, that a (good) 32-bit LCG can be used to obtain about a thousand random numbers; a 64-bit LCG is good for about 2 21 random samples (a little over two million), etc ...

  4. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    These approaches combine a pseudo-random number generator (often in the form of a block or stream cipher) with an external source of randomness (e.g., mouse movements, delay between keyboard presses etc.). /dev/random – Unix-like systems; CryptGenRandom – Microsoft Windows; Fortuna; RDRAND instructions (called Intel Secure Key by Intel ...

  5. Combined linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Combined_Linear_Congruenti...

    The CLCG provides an efficient way to calculate pseudo-random numbers. The LCG algorithm is computationally inexpensive to use. [3] The results of multiple LCG algorithms are combined through the CLCG algorithm to create pseudo-random numbers with a longer period than is achievable with the LCG method by itself. [3]

  6. Random number generation - Wikipedia

    en.wikipedia.org/wiki/Random_number_generation

    Dice are an example of a hardware random number generator. When a cubical die is rolled, a random number from 1 to 6 is obtained. Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols is generated that cannot be reasonably predicted better than by random chance.

  7. Xorshift - Wikipedia

    en.wikipedia.org/wiki/Xorshift

    Xorshift random number generators, also called shift-register generators, are a class of pseudorandom number generators that were invented by George Marsaglia. [1] They are a subset of linear-feedback shift registers (LFSRs) which allow a particularly efficient implementation in software without the excessive use of sparse polynomials . [ 2 ]

  8. Pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_number_generator

    It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...

  9. Mersenne Twister - Wikipedia

    en.wikipedia.org/wiki/Mersenne_Twister

    Visualisation of generation of pseudo-random 32-bit integers using a Mersenne Twister. The 'Extract number' section shows an example where integer 0 has already been output and the index is at integer 1. 'Generate numbers' is run when all integers have been output.