Search results
Results from the WOW.Com Content Network
The reaction mechanism for chlorination of benzene is the same as bromination of benzene. Iron(III) bromide and iron(III) chloride become inactivated if they react with water, including moisture in the air. Therefore, they are generated by adding iron filings to bromine or chlorine. Here is the mechanism of this reaction:
Chlorobenzene (abbreviated PhCl) is an aryl chloride and the simplest of the chlorobenzenes, consisting of a benzene ring substituted with one chlorine atom. Its chemical formula is C 6 H 5 Cl. This colorless, flammable liquid is a common solvent and a widely used intermediate in the manufacture of other chemicals. [6]
He showed that for each mole of chlorine introduced into a hydrocarbon, one mole of hydrogen chloride is also formed and noted the light-sensitivity of this reaction. [2] The idea that these reactions might be chain reactions is attributed to Max Bodenstein (1913). He assumed that in the reaction of two molecules not only the end product of the ...
Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved, whether a reactive intermediate involved in the reaction is a carbocation, a carbanion or a free radical, and whether the substrate is aliphatic or aromatic. Detailed understanding of a reaction type helps to ...
A dechlorinator is a chemical additive that removes chlorine or chloramine from water. Where tap water is chlorinated, it should be dechlorinated before use in an aquarium, since chlorine can harm aquatic life in the same way it kills micro-organisms. Chlorine will kill fish [20] and cause damage to an aquarium's biological filter. [21]
p-DCB is produced by chlorination of benzene using ferric chloride as a catalyst: . C 6 H 6 + 2 Cl 2 → C 6 H 4 Cl 2 + 2 HCl. The chief impurity is the 1,2 isomer.The compound can be purified by fractional crystallization, taking advantage of its relatively high melting point of 53.5 °C; the isomeric dichlorobenzenes and chlorobenzene melt well below room temperature.
In the first step, the reaction is only run to 10% to 15% conversion to prevent the second addition of a chlorine atom to the desired chlorobenzene. Despite this, the overall selectivity of the reaction is 70% to 85%. This second addition can be reversed using the Hooker modification, though it is also costly.
Iodobenzene reacts with chlorine to give the complex, iodobenzene dichloride, [4] which is used as a solid source of chlorine. Iodobenzene can also serve as a substrate for the Sonogashira coupling, Heck reaction, and other metal-catalyzed couplings. These reactions proceed via the oxidative addition of iodobenzene.