Search results
Results from the WOW.Com Content Network
A function with period P will repeat on intervals of length P, and these intervals are sometimes also referred to as periods of the function. Geometrically, a periodic function can be defined as a function whose graph exhibits translational symmetry , i.e. a function f is periodic with period P if the graph of f is invariant under translation ...
This is a list of some well-known periodic functions. The constant function f (x) = c, where c is independent of x, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions.
a n+p = a n. for all values of n. [1] [2] [3] If a sequence is regarded as a function whose domain is the set of natural numbers, then a periodic sequence is simply a special type of periodic function. [citation needed] The smallest p for which a periodic sequence is p-periodic is called its least period [1] or exact period.
This class of functions is also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions, i.e., meromorphic functions that are doubly periodic .
If () is a periodic function, with period , that has a convergent Fourier series, then: ^ = = (), where are the Fourier series coefficients of , and is the Dirac delta function. In other words, the Fourier transform is a Dirac comb function whose teeth are multiplied by the Fourier series coefficients.
The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula := = for some given period . [1]
The smallest positive integer n satisfying the above is called the prime period or least period of the point x. If every point in X is a periodic point with the same period n, then f is called periodic with period n (this is not to be confused with the notion of a periodic function). If there exist distinct n and m such that
with and () being a piecewise continuous periodic function with period and defines the state of the stability of solutions. The main theorem of Floquet theory, Floquet's theorem , due to Gaston Floquet ( 1883 ), gives a canonical form for each fundamental matrix solution of this common linear system .