Search results
Results from the WOW.Com Content Network
A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known.
[1] [2] In other words, () is the probability that a normal (Gaussian) random variable will obtain a value larger than standard deviations. Equivalently, Q ( x ) {\displaystyle Q(x)} is the probability that a standard normal random variable takes a value larger than x {\displaystyle x} .
Standard method like Gauss elimination can be used to solve the matrix equation for .A more numerically stable method is provided by QR decomposition method. Since the matrix is a symmetric positive definite matrix, can be solved twice as fast with the Cholesky decomposition, while for large sparse systems conjugate gradient method is more effective.
This integral is 1 if and only if = (the normalizing constant), and in this case the Gaussian is the probability density function of a normally distributed random variable with expected value μ = b and variance σ 2 = c 2: = (()).
In mathematical notation, these facts can be expressed as follows, where Pr() is the probability function, [1] Χ is an observation from a normally distributed random variable, μ (mu) is the mean of the distribution, and σ (sigma) is its standard deviation: (+) % (+) % (+) %
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
An example found by Marcus and Shepp [18]: 387 is a random lacunary Fourier series = = ( + ), where ,,,, … are independent random variables with standard normal distribution; frequencies < < < … are a fast growing sequence; and coefficients > satisfy <.
If X is a random variable from a normal distribution with mean μ and standard deviation σ, its Z-score may be calculated from X by subtracting μ and dividing by the standard deviation: Z = X − μ σ {\displaystyle Z={\frac {X-\mu }{\sigma }}}