Search results
Results from the WOW.Com Content Network
The net magnetic moment of any system is a vector sum of contributions from one or both types of sources. For example, the magnetic moment of an atom of hydrogen-1 (the lightest hydrogen isotope, consisting of a proton and an electron) is a vector sum of the following contributions: the intrinsic moment of the electron,
More precisely, the term magnetic moment normally refers to a system's magnetic dipole moment, which produces the first term in the multipole expansion [note 1] of a general magnetic field. Both the torque and force exerted on a magnet by an external magnetic field are proportional to that magnet's magnetic moment. The magnetic moment is a ...
Thus, even in the absence of an applied field, the magnetic moments of the electrons in the material spontaneously line up parallel to one another. Every ferromagnetic substance has its own individual temperature, called the Curie temperature, or Curie point, above which it loses its ferromagnetic properties. This is because the thermal ...
The spacing between field lines is an indicator of the relative strength of the magnetic field. Where magnetic field lines converge the field grows stronger, and where they diverge, weaker. Now, it can be shown that in the motion of gyrating particles, the "magnetic moment" μ = W ⊥ /B (or relativistically, p ⊥ 2 /2mγB) stays very nearly ...
where μ 0 is the magnetic constant, r̂ is a unit vector parallel to the line joining the centers of the two dipoles, and | r | is the distance between the centers of m 1 and m 2. Last term with δ {\displaystyle \delta } -function vanishes everywhere but the origin, and is necessary to ensure that ∇ ⋅ B {\displaystyle \nabla \cdot \mathbf ...
One-loop correction to a fermion's magnetic dipole moment. The solid lines at top and bottom represent the fermion (electron or nucleon), the wavy lines represent the particle mediating the force (photons for QED, mesons for nuclear force).
Objects with a magnetic moment also have angular momentum and effective internal electric current proportional to their angular momentum; these include electrons, protons, other fermions, many atomic and nuclear systems, as well as classical macroscopic systems. The external magnetic field exerts a torque on the magnetic moment,
However, the effect of a torque applied to an electron's magnetic moment must be considered in light of spin-orbit interaction.Because the magnetic moment of an electron is a consequence of its spin and orbit and the associated angular momenta, the magnetic moment of an electron is directly proportional to its angular momentum through the gyromagnetic ratio, such that