Search results
Results from the WOW.Com Content Network
Pure fluorite is colourless and transparent, both in visible and ultraviolet light, but impurities usually make it a colorful mineral and the stone has ornamental and lapidary uses. Industrially, fluorite is used as a flux for smelting, and in the production of certain glasses and enamels.
The word "fluorine" derives from the Latin stem of the main source mineral, fluorite, which was first mentioned in 1529 by Georgius Agricola, the "father of mineralogy". He described fluorite as a flux—an additive that helps melt ores and slags during smelting. [1] [2] Fluorite stones were called schone flusse in the German of the time ...
Though elemental fluorine (F 2) is very rare in everyday life, fluorine-containing compounds such as fluorite occur naturally as minerals. Naturally occurring organofluorine compounds are extremely rare. Man-made fluoride compounds are common and are used in medicines, pesticides, and materials.
The main uses of fluoride, in terms of volume, are in the production of cryolite, Na 3 AlF 6. It is used in aluminium smelting. Formerly, it was mined, but now it is derived from hydrogen fluoride. Fluorite is used on a large scale to separate slag in steel-making. Mined fluorite (CaF 2) is a commodity chemical used in steel-making.
Fluorite, the primary mineral source of fluorine, which gave the element its name, was first described in 1529; as it was added to metal ores to lower their melting points for smelting, the Latin verb fluo meaning ' to flow ' gave the mineral its name. Proposed as an element in 1810, fluorine proved difficult and dangerous to separate from its ...
Hydrogen fluoride is typically produced by the reaction between sulfuric acid and pure grades of the mineral fluorite: [14] CaF 2 + H 2 SO 4 → 2 HF + CaSO 4. About 20% of manufactured HF is a byproduct of fertilizer production, which generates hexafluorosilicic acid. This acid can be degraded to release HF thermally and by hydrolysis: H 2 SiF ...
The fluorite structure refers to a common motif for compounds with the formula MX 2. [1] [2] The X ions occupy the eight tetrahedral interstitial sites whereas M ions occupy the regular sites of a face-centered cubic (FCC) structure. Many compounds, notably the common mineral fluorite (CaF 2), adopt this structure.
Substantial energy is still needed for both heating the materials and the electrolysis, but it is much more energy-efficient than melting the oxides themselves. As natural cryolite is now too rare to be used for this purpose, synthetic sodium aluminium fluoride is produced from the common mineral fluorite. [citation needed]