enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bacterial growth - Wikipedia

    en.wikipedia.org/wiki/Bacterial_growth

    It is ideally spatially unstructured and temporally unstructured, in a steady state defined by the rates of nutrient supply and bacterial growth. In comparison to batch culture, bacteria are maintained in exponential growth phase, and the growth rate of the bacteria is known. Related devices include turbidostats and auxostats.

  3. Filamentation - Wikipedia

    en.wikipedia.org/wiki/Filamentation

    In the absence of antibiotics or other stressors, filamentation occurs at a low frequency in bacterial populations (4–8% short filaments and 0–5% long filaments in 1- to 8-hour cultures). [3] The increased cell length can protect bacteria from protozoan predation and neutrophil phagocytosis by making ingestion of cells more difficult.

  4. Growth curve (biology) - Wikipedia

    en.wikipedia.org/wiki/Growth_curve_(biology)

    Figure 1: A bi-phasic bacterial growth curve.. A growth curve is an empirical model of the evolution of a quantity over time. Growth curves are widely used in biology for quantities such as population size or biomass (in population ecology and demography, for population growth analysis), individual body height or biomass (in physiology, for growth analysis of individuals).

  5. Monod equation - Wikipedia

    en.wikipedia.org/wiki/Monod_equation

    μ is the growth rate of a considered microorganism, μ max is the maximum growth rate of this microorganism, [S] is the concentration of the limiting substrate S for growth, K s is the "half-velocity constant"—the value of [S] when μ/μ max = 0.5. μ max and K s are empirical (experimental) coefficients to the Monod equation. They will ...

  6. Bacteria - Wikipedia

    en.wikipedia.org/wiki/Bacteria

    The log phase is marked by rapid exponential growth. The rate at which cells grow during this phase is known as the growth rate (k), and the time it takes the cells to double is known as the generation time (g). During log phase, nutrients are metabolised at maximum speed until one of the nutrients is depleted and starts limiting growth.

  7. Chemostat - Wikipedia

    en.wikipedia.org/wiki/Chemostat

    The growth rate of the microorganism is controlled by manipulation of the inflow of fresh medium, while the population density is regulated through changing the concentration of the limiting nutrient. This open system allows researchers to maintain the exponential growth phase of cells for use in physiological experiments. [1]

  8. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. [3] In more advanced mathematics, the partial sums of the harmonic series

  9. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    As resources become more limited, the growth rate tapers off, and eventually, once growth rates are at the carrying capacity of the environment, the population size will taper off. [6] This S-shaped curve observed in logistic growth is a more accurate model than exponential growth for observing real-life population growth of organisms. [8]