Search results
Results from the WOW.Com Content Network
Add the last digit to twice the rest. The result must be divisible by 8. 56: (5 × 2) + 6 = 16. The last three digits are divisible by 8. [2] [3] 34,152: examine divisibility of just 152: 19 × 8. The sum of the ones digit, double the tens digit, and four times the hundreds digit is divisible by 8. 34,152: 4 × 1 + 5 × 2 + 2 = 16. 9
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
Every year that is exactly divisible by four is a leap year, except for years that are exactly divisible by 100, but these centurial years are leap years if they are exactly divisible by 400. For example, the years 1700, 1800, and 1900 are not leap years, but the years 1600 and 2000 are. [8] 1800 calendar, showing that February had only 28 days
In the past 500 years, there was no leap day in 1700, 1800 and 1900, but 2000 had one. In the next 500 years, if the practice is followed, there will be no leap day in 2100, 2200, 2300 and 2500 ...
2012 – The number 8 × 10 2012 − 1 is a prime number [10] 2013 – number of widely totally strongly normal compositions of 17; 2014 – 5 × 2 2014 - 1 is prime [11] 2015 – Lucas–Carmichael number [12] 2016 – triangular number, number of 5-cubes in a 9-cube, ErdÅ‘s–Nicolas number, [13] 2 11-2 5; 2017 – Mertens function zero, sexy ...
A year divisible by 100 is not a leap year in the Gregorian calendar unless it is also divisible by 400. For example, 1600 was a leap year, but 1700, 1800 and 1900 were not. Some programs may have relied on the oversimplified rule that "a year divisible by four is a leap year".
the k given prime numbers p i must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);
The number 18 is a harshad number in base 10, because the sum of the digits 1 and 8 is 9, and 18 is divisible by 9.; The Hardy–Ramanujan number (1729) is a harshad number in base 10, since it is divisible by 19, the sum of its digits (1729 = 19 × 91).