Search results
Results from the WOW.Com Content Network
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3] CuPy shares the same API set as NumPy and SciPy, allowing it to be a drop-in replacement to run NumPy/SciPy code on GPU.
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
Reducing the range of any index to a single value effectively eliminates that index. This feature can be used, for example, to extract one-dimensional slices (vectors: in 3D, rows, columns, and tubes [1]) or two-dimensional slices (rectangular matrices) from a three-dimensional array. However, since the range can be specified at run-time, type ...
In Python, functions are first-class objects that can be created and passed around dynamically. Python's limited support for anonymous functions is the lambda construct. An example is the anonymous function which squares its input, called with the argument of 5:
The following is an example of a possible implementation of Newton's method in the Python (version 3.x) programming language for finding a root of a function f which has derivative f_prime. The initial guess will be x 0 = 1 and the function will be f ( x ) = x 2 − 2 so that f ′ ( x ) = 2 x .
Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).
Cubic Hermite splines are typically used for interpolation of numeric data specified at given argument values ,, …,, to obtain a continuous function. The data should consist of the desired function value and derivative at each . (If only the values are provided, the derivatives must be estimated from them.)
String functions common to many languages are listed below, including the different names used. The below list of common functions aims to help programmers find the equivalent function in a language. Note, string concatenation and regular expressions are handled in separate pages. Statements in guillemets (« … ») are optional.