enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The solid angle, Ω, at the vertex of a Platonic solid is given in terms of the dihedral angle by Ω = q θ − ( q − 2 ) π . {\displaystyle \Omega =q\theta -(q-2)\pi .\,} This follows from the spherical excess formula for a spherical polygon and the fact that the vertex figure of the polyhedron { p , q } is a regular q -gon.

  3. Aperiodic set of prototiles - Wikipedia

    en.wikipedia.org/wiki/Aperiodic_set_of_prototiles

    Within that plane, every triangle, irrespective of regularity, will tessellate. In contrast, regular pentagons do not tessellate. However, irregular pentagons, with different sides and angles can tessellate. There are 15 irregular convex pentagons that tile the plane. [6] Polyhedra are the three dimensional correlates of polygons.

  4. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    Regular tetrahedra alone do not tessellate (fill space), but if alternated with regular octahedra in the ratio of two tetrahedra to one octahedron, they form the alternated cubic honeycomb, which is a tessellation. Some tetrahedra that are not regular, including the Schläfli orthoscheme and the Hill tetrahedron, can tessellate.

  5. Einstein problem - Wikipedia

    en.wikipedia.org/wiki/Einstein_problem

    In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way. Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [2]

  6. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    The original form of Penrose tiling used tiles of four different shapes, but this was later reduced to only two shapes: either two different rhombi, or two different quadrilaterals called kites and darts. The Penrose tilings are obtained by constraining the ways in which these shapes are allowed to fit together in a way that avoids periodic tiling.

  7. Rep-tile - Wikipedia

    en.wikipedia.org/wiki/Rep-tile

    The chair substitution (left) and a portion of a chair tiling (right) A rep-tile is labelled rep-n if the dissection uses n copies. Such a shape necessarily forms the prototile for a tiling of the plane, in many cases an aperiodic tiling. A rep-tile dissection using different sizes of the original shape is called an irregular rep-tile or irreptile.

  8. Honeycomb (geometry) - Wikipedia

    en.wikipedia.org/wiki/Honeycomb_(geometry)

    There are 28 convex examples in Euclidean 3-space, [1] also called the Archimedean honeycombs. A honeycomb is called regular if the group of isometries preserving the tiling acts transitively on flags, where a flag is a vertex lying on an edge lying on a face lying on a cell. Every regular honeycomb is automatically uniform.

  9. List of two-dimensional geometric shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_two-dimensional...

    This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.