Search results
Results from the WOW.Com Content Network
In a real lipid membrane, the diffusion coefficient may be limited by: the size of the membrane; the inertia of the membrane (finite Reynolds number) the effect of the liquid surrounding the membrane; Philip Saffman and Max Delbrück calculated the diffusion coefficient for these three cases, and showed that Case 3 was the relevant effect. [1]
Integral membrane proteins function when incorporated into a lipid bilayer, and they are held tightly to the lipid bilayer with the help of an annular lipid shell. Because bilayers define the boundaries of the cell and its compartments, these membrane proteins are involved in many intra- and inter-cellular signaling processes.
In biology, membrane fluidity refers to the viscosity of the lipid bilayer of a cell membrane or a synthetic lipid membrane. Lipid packing can influence the fluidity of the membrane. Viscosity of the membrane can affect the rotation and diffusion of proteins and other bio-molecules within the membrane, there-by affecting the functions of these ...
A model lipid bilayer is any bilayer assembled in vitro, as opposed to the bilayer of natural cell membranes or covering various sub-cellular structures like the nucleus. They are used to study the fundamental properties of biological membranes in a simplified and well-controlled environment, and increasingly in bottom-up synthetic biology for ...
Building on the fluid mosaic model, a framework called the proteolipid code was proposed in order to explain membrane organization. [8] The proteolipid code relies on the concept of a zone, which is a functional region of membrane that is assembled and stabilized with both protein and lipid dependency.
This interaction also increases the mechanical rigidity of fluid membrane lipid bilayers [9] and decreases their lateral diffusion coefficient. [10] In contrast, the addition of cholesterol to gel phase bilayers disrupts local packing order, increasing the diffusion coefficient [10] and decreasing the elastic modulus.
Fluid mosaic model of a cell membrane. The fluid mosaic model explains various characteristics regarding the structure of functional cell membranes.According to this biological model, there is a lipid bilayer (two molecules thick layer consisting primarily of amphipathic phospholipids) in which protein molecules are embedded.
FE Modeling is a powerful tool for testing the mechanical deformation and equilibrium configuration of lipid membranes. [13] In this context membranes are treated under the thin-shell theory where the bending behavior of the membrane is described by the Helfrich bending model which considers the bilayer as being a very thin object and ...