Search results
Results from the WOW.Com Content Network
The manufacturing of thick film devices/modules is an additive process involving deposition of several (typically max 6–8) successive layers of conductive, resistive and dielectric layers onto an electrically insulating substrate using a screen-printing process. [3] Thick Film Resistor Networks
Resistor based on the sheet resistance of carbon film Sheet resistance is the resistance of a square piece of a thin material with contacts made to two opposite sides of the square. [ 1 ] It is usually a measurement of electrical resistance of thin films that are uniform in thickness.
A thin film is a layer of materials ranging from fractions of a nanometer to several micrometers in thickness. [1] The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many applications.
The film is then etched in a similar manner to the old (subtractive) process for making printed circuit boards; that is, the surface is coated with a photo-sensitive material, covered by a pattern film, irradiated with ultraviolet light, and then the exposed photo-sensitive coating is developed, and underlying thin film is etched away.
Manufacturing of IPDs used include thick [12] and thin film [13] [14] technologies and variety of integrated circuit processing steps or modifications (like thicker or different metals than aluminum or copper) of them. Integrated passives are available as standard components/parts or as custom designed (for a specific application) devices.
Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices , including transistors . [ 1 ] MBE is used to make diodes and MOSFETs (MOS field-effect transistors ) at microwave frequencies, and to manufacture the lasers used to read optical discs ...
These processes typically include depositing a film, patterning the film with the desired micro features, and removing (or etching) portions of the film. Thin film metrology is used typically during each of these individual process steps, to ensure the film structure has the desired characteristics in terms of thickness (t), refractive index (n ...
Layer-by-layer (LbL) deposition is a thin film fabrication technique. The films are formed by depositing alternating layers of complementary materials with wash steps in between. This can be accomplished by using various techniques such as immersion, spin, spray, electromagnetism, or fluidics. [1]